Genetics of chronic fatigue syndrome

From MEpedia, a crowd-sourced encyclopedia of ME and CFS science and history
Jump to: navigation, search

The genetics of chronic fatigue syndrome is an area of research as ME/CFS has been observed in families.[1] It is unknown if there is a genetic link or common environmental exposure (infectious or toxic). Studies of twins show higher rates of ME/CFS in identical than fraternal twins. The Centers for Disease Control and Prevention (CDC) notes that specific genetic associations have not been established.[1]

A 2011 study by Albright et al showed evidence of a heritable contribution to chronic fatigue syndrome (CFS).[2] Using the extensive records of the Utah Population Database (UPDB), the study "shows clear evidence of significant excess familial clustering and significantly elevated risks for CFS among first, second, and third degree relatives of CFS cases. The results strongly support a genetic contribution to predisposition to CFS as it is currently defined and diagnosed by clinicians in Utah." Increased outbreak rates in first degree relatives are not automatically assumed to be genetic because the first degree relatives often share the same lifestyle and environment. However, a significantly increased incidence (95% confidence interval) in second and third degree relatives strongly indicated a genetic contribution to CFS, given the much lower likelihood of these relatives sharing common risks and environments.[2]

Albright,2011 study

A 2001 study in the UK showed "there were significantly higher rates of CFS in the relatives of CFS cases compared with the relatives of control subjects."[3] Three twin studies (one in Australia, one in Washington, US, both in 2001, and one in the UK in 2007) showed that the correlations for prolonged and chronic fatigue were significantly higher in monozygotic than dizygotic twins for each definition of chronic fatigue syndrome.[4][5][6]

One study showed that patients with mitochondrial DNA from certain haplogroups correlated with variations in gastrointestinal, neurological, and inflammatory symptoms.[7]

Notable studies[edit | edit source]

Media Coverage[edit | edit source]

See also[edit | edit source]

Learn more[edit | edit source]

References[edit | edit source]

  1. 1.01.1 "Etiology and Pathophysiology | Presentation and Clinical Course | Healthcare Providers | Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) | CDC". www.cdc.gov. Nov 8, 2018. Retrieved Feb 8, 2019. 
  2. 2.02.12.2 Albright, Frederick; Light, Kathleen; Light, Alan; Bateman, Lucinda; Cannon-Albright, Lisa A (2011), "Evidence for a heritable predisposition to Chronic Fatigue Syndrome", BMC Neurology, 11 (62), doi:10.1186/1471-2377-11-62 
  3. Walsh, C. M.; Zainal, N. Z.; Middleton, S. J.; Paykel, E. S. (Sep 2001). "A family history study of chronic fatigue syndrome". Psychiatric Genetics. 11 (3): 123–128. doi:10.1097/00041444-200109000-00003. ISSN 0955-8829. 
  4. 4.04.1 Buchwald, D.; Herrell, R.; Ashton, S.; Belcourt, M.; Schmaling, K.; Sullivan, P.; Neale, M.; Goldberg, J. (2001), "A twin study of chronic fatigue.", Psychosomatic Medicine, 63 (6): 936-943, PMID 11719632 
  5. Hickie, IB; Bansal, AS; Kirk, KM; Lloyd, AR; Martin, NG (2001), "A twin study of the etiology of prolonged fatigue and immune activation", Twin Research, 4 (2): 94-102, doi:10.1375/1369052012209 
  6. Schur, Ellen; Afari, Niloofar; Goldberg, Jack; Buchwald, Dedra; Sullivan, Patrick F. (2007), "Twin analyses of fatigue", Twin Research and Human Genetics, 10 (5): 729-733, doi:10.1375/twin.10.5.729 
  7. 7.07.1 Billing-Ross, Paul; Germain, Arnaud; Ye, Kaixiong; Keinan, Alon; Gu, Zhenglong; Hanson, Maureen R. (Jan 20, 2016). "Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome". Journal of Translational Medicine. 14 (1): 19. doi:10.1186/s12967-016-0771-6. ISSN 1479-5876. 
  8. Goertzel, Benjamin N.; Pennachin, Cassio; de Souza Coelho, Lucio; Gurbaxani, Brian; Maloney, Elizabeth M.; Jones, James F. (April 2006). "Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome". Pharmacogenomics. 7 (3): 475–483. doi:10.2217/14622416.7.3.475. ISSN 1462-2416. PMID 16610957. 
  9. Light, A. R.; Bateman, L.; Jo, D.; Hughen, R. W.; VanHaitsma, T. A.; White, A. T.; Light, K. C. (Jul 13, 2011). "Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome". Journal of Internal Medicine. 271 (1): 64–81. doi:10.1111/j.1365-2796.2011.02405.x. ISSN 0954-6820. PMC 3175315Freely accessible. PMID 21615807. 
  10. Schlauch, Karen A.; Khaiboullina, Svetlana F.; De Meirleir, Kenny L.; Rawat, Shanti; Petereit, J; Rizvanov, Albert A; Blatt, Nataliya; Mijatovic, Tatjana; Kulick, D; Palotás, András; Lombardi, Vincent C. (2016), "Genome-wide association analysis identifies genetic variations in subjects with myalgic encephalomyelitis/chronic fatigue syndrome", Translational Psychiatry, 6 (2): e730, doi:10.1038/tp.2015.208 
  11. Trivedi, Malav S.; Oltra, Elisa; Sarria, Leonor; Rose, Natasha; Beljanski, Vladimir; Fletcher, Mary Ann; Klimas, Nancy G.; Nathanson, Lubov (2018). "Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns". PloS One. 13 (7): e0201066. doi:10.1371/journal.pone.0201066. ISSN 1932-6203. PMID 30036399. 
  12. Herrera, Santiago; de Vega, Wilfred C.; Ashbrook, David; Vernon, Suzanne D.; McGowan, Patrick O. (Dec 5, 2018). "Genome-epigenome interactions associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome". Epigenetics: 1–17. doi:10.1080/15592294.2018.1549769. ISSN 1559-2308. PMID 30516085. 
  13. Nguyen, Chinh Bkrong; Kumar, Surendra; Zucknick, Manuela; Kristensen, Vessela N.; Gjerstad, Johannes; Nilsen, Hilde; Wyller, Vegard Bruun (Feb 2019). "Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome". Brain, Behavior, and Immunity. 76: 82–96. doi:10.1016/j.bbi.2018.11.008. ISSN 1090-2139. PMID 30419269. 
  14. Nathanson, Lubov; Craddock, Travis J. A.; Klimas, Nancy G.; Gemayel, Kristina; Del Alamo, Ana; Hilton, Kelly; Jaundoo, Rajeev; Perez, Melanie (2019). "Genetic Predisposition for Immune System, Hormone, and Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study". Frontiers in Pediatrics. 7. doi:10.3389/fped.2019.00206. ISSN 2296-2360. 

ME/CFS - An acronym that combines myalgic encephalomyelitis with chronic fatigue syndrome. Sometimes they are combined because people have trouble distinguishing one from the other. Sometimes they are combined because people see them as synonyms of each other.

Chronic fatigue (CF) - Persistent and abnormal fatigue is a symptom, not an illness. It may be caused by depression, multiple sclerosis, fibromyalgia, chronic fatigue syndrome or many other illnesses. The term "chronic fatigue" should never be confused with the disease chronic fatigue syndrome.

Accuracy - The "closeness of an observation to the true clinical state". With respect to diagnostic tests, "accuracy" means how specific and sensitive the test is.

Myalgic encephalomyelitis (ME) - A disease often marked by neurological symptoms, but fatigue is sometimes a symptom as well. Some diagnostic criteria distinguish it from chronic fatigue syndrome, while other diagnostic criteria consider it to be a synonym for chronic fatigue syndrome. A defining characteristic of ME is post-exertional malaise (PEM), or post-exertional neuroimmune exhaustion (PENE), which is a notable exacerbation of symptoms brought on by small exertions. PEM can last for days or weeks. Symptoms can include cognitive impairments, muscle pain (myalgia), trouble remaining upright (orthostatic intolerance), sleep abnormalities, and gastro-intestinal impairments, among others. An estimated 25% of those suffering from ME are housebound or bedbound. The World Health Organization (WHO) classifies ME as a neurological disease.

Myalgic encephalomyelitis (ME) - A disease often marked by neurological symptoms, but fatigue is sometimes a symptom as well. Some diagnostic criteria distinguish it from chronic fatigue syndrome, while other diagnostic criteria consider it to be a synonym for chronic fatigue syndrome. A defining characteristic of ME is post-exertional malaise (PEM), or post-exertional neuroimmune exhaustion (PENE), which is a notable exacerbation of symptoms brought on by small exertions. PEM can last for days or weeks. Symptoms can include cognitive impairments, muscle pain (myalgia), trouble remaining upright (orthostatic intolerance), sleep abnormalities, and gastro-intestinal impairments, among others. An estimated 25% of those suffering from ME are housebound or bedbound. The World Health Organization (WHO) classifies ME as a neurological disease.

The information provided at this site is not intended to diagnose or treat any illness.
From MEpedia, a crowd-sourced encyclopedia of ME and CFS science and history.