Toll-like receptor
Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. Ten toll-like receptors have been identified in humans; TLR1 to TLR10.[1] They are type I transmembrane glycoproteins, and are expressed on several immune cell types including dendritic cells, macrophages, B cells, and natural killer cells.[2]
Types of Toll-like receptors[edit | edit source]
Ten types of toll-like receptors have been identified in humans.
Types of Toll-like receptors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | Anatomy | Cell types | Location | Triggers | Knock out mice (genetically engineered to be missing this receptor completely) | Human mutations | Agonists (increases activity) | Antagonists (decreases activity) | Diseases associated with increased activity | Diseases associated with decreased activity |
TLR1 | small and large intestine | macrophages, neutrophils | cytoplasmic membrane | gram-positive bacteria, Borrelia burgdorferi[3][4][5][6] | deficiency associated with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis[7] | |||||
TLR2 | lungs, kidneys, skin, gastrointestinal tract | microglia, Schwann cells, monocytes, macrophages, dendritic cells, polymorphonuclear leukocytes, B cells, T cells | cytoplasmic membrane | Herpes simplex virus[8], varicella zoster virus[9], heat shock proteins, cytomegalovirus[10],Epstein-Barr virus[11], Borrelia burgdorferi[3][4][5][6] | Reduced susceptibility to inflammatory damage following HSV-1 infection[8] | Nanocurcumin[12] | ||||
TLR3 | placenta, pancreas | dendritic leukocytes | intracellular vesicles | dsRNA molecules | Increased susceptibility to Coxsackie B3 infection[13] | Deficiency associated with HSV-1 encephalitis[14] | Ampligen[15] | |||
TLR4 | Monocytes/macrophages, dendritic cell subset, mast cells, intestinal epithelium[16] | cytoplasmic membrane | lipopolysaccharides,heat shock protein,Coxsackie B3[17], Coxsackie B4 [18], HSV-2[19], malaria | Reduced myocarditis and viral replication with Coxsackie B4 infection.[17] | Ethanol[20], adjuvants in some vaccines[21] | Amitriptyline,Naltrexone, Nanocurcumin[12] | ME/CFS[22] | |||
TLR5 | cytoplasmic membrane | |||||||||
TLR6 | cytoplasmic membrane | |||||||||
TLR7 | lung, placenta, and spleen | intracellular vesicles | ssRNA and other small molecules, Epstein Barr virus[23] | Imiquimod | Plaquenil | Systemic lupus erythematosus (SLE) | ||||
TLR8 | intracellular vesicles | ssRNA and other small molecules | ||||||||
TLR9 | intracellular vesicles | HSV-2,[19] varicella zoster virus,[9] Epstein Barr virus[23][24] | Plaquenil | |||||||
TLR10 | intracellular vesicles |
Infection[edit | edit source]
Coxsackie B4 triggers TLR4 on human pancreatic cells[18], TLR4 knock-out mice infected with Coxsackie B3 showed reduced myocarditis and viral replication.[17]
Genetics[edit | edit source]
TLR polymorphisms occur even within a species, and can significantly affect an individual’s susceptibility to infection and disease caused by a particular microbe.[25]
Pharmacology[edit | edit source]
Drugs known to block TLRs include hydroxychloroquine.
Several drugs that target TLRs are being studied for the treatment of cancer and inflammatory diseases.[26]
Learn more[edit | edit source]
- Toll-like receptor sensing of human herpesvirus infection
- Type B coxsackieviruses and their interactions with the innate and adaptive immqune systems
- Toll-like Receptors (TLRs) table[16]
See also[edit | edit source]
References[edit | edit source]
- ↑ Nie, Li; Cai, Shi-Yu; Shao, Jian-Zhong; Chen, Jiong (2018). "Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals". Frontiers in Immunology. 9. doi:10.3389/fimmu.2018.01523. ISSN 1664-3224. PMC 6043800. PMID 30034391.
- ↑ Kemball, Christopher C; Alirezaei, Mehrdad; Whitton, J Lindsay (September 2010). "Type B coxsackieviruses and their interactions with the innate and adaptive immune systems". Future microbiology. 5 (9): 1329–1347. doi:10.2217/fmb.10.101. ISSN 1746-0913. PMC 3045535. PMID 20860480.
- ↑ 3.0 3.1 Bernardino, Andrea L. F.; Myers, Tereance A.; Alvarez, Xavier; Hasegawa, Atsuhiko; Philipp, Mario T. (October 2008). "Toll-Like Receptors: Insights into Their Possible Role in the Pathogenesis of Lyme Neuroborreliosis". Infection and Immunity. 76 (10): 4385–4395. doi:10.1128/IAI.00394-08. ISSN 0019-9567. PMC 2546821. PMID 18694963.
- ↑ 4.0 4.1 Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa (May 31, 2016). "Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease". Journal of Inflammation Research. 9: 91–102. doi:10.2147/JIR.S104790. ISSN 1178-7031. PMC 4898433. PMID 27330321.
- ↑ 5.0 5.1 Singh, S.K.; Girschick, H.J. (August 2006). "Toll-like receptors in Borrelia burgdorferi-induced inflammation". Clinical Microbiology and Infection. 12 (8): 705–717. doi:10.1111/j.1469-0691.2006.01440.x.
- ↑ 6.0 6.1 Joosten, Leo A. B.; Netea, Mihai G.; Meer, Jos W. M. van der; Kullberg, Bart-Jan; Adema, Gosse J.; Sturm, Patrick; Hofstede, Hadewych ter; Oosting, Marije (October 5, 2011). "TLR1/TLR2 Heterodimers Play an Important Role in the Recognition of Borrelia Spirochetes". PLOS ONE. 6 (10): e25998. doi:10.1371/journal.pone.0025998. ISSN 1932-6203. PMC 3187844. PMID 21998742.
- ↑ Strle, Klemen; Shin, Junghee J.; Glickstein, Lisa J.; Steere, Allen C. (May 2012). "Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis". Arthritis and Rheumatism. 64 (5): 1497–1507. doi:10.1002/art.34383. ISSN 1529-0131. PMC 3338893. PMID 22246581.
- ↑ 8.0 8.1 West, John A.; Gregory, Sean M.; Damania, Blossom (October 8, 2012). "Toll-like receptor sensing of human herpesvirus infection". Frontiers in Cellular and Infection Microbiology. 2. doi:10.3389/fcimb.2012.00122. ISSN 2235-2988. PMC 3465860. PMID 23061052.
- ↑ 9.0 9.1 Gershon, Anne A.; Gershon, Michael D.; Breuer, Judith; Levin, Myron J.; Oaklander, Anne Louise; Griffiths, Paul D. (May 2010). "Advances in the understanding of the pathogenesis and epidemiology of herpes zoster". Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology. 48 (Suppl 1): S2–7. doi:10.1016/S1386-6532(10)70002-0. ISSN 1873-5967. PMC 5391040. PMID 20510263.
- ↑ Compton, Teresa; Kurt-Jones, Evelyn A.; Boehme, Karl W.; Belko, John; Latz, Eicke; Golenbock, Douglas T.; Finberg, Robert W. (April 2003). "Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2". Journal of Virology. 77 (8): 4588–4596. ISSN 0022-538X. PMID 12663765.
- ↑ Gaudreault, Eric; Fiola, Stéphanie; Olivier, Martin; Gosselin, Jean (August 2007). "Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2". Journal of Virology. 81 (15): 8016–8024. doi:10.1128/JVI.00403-07. ISSN 0022-538X. PMC 1951286. PMID 17522215.
- ↑ 12.0 12.1 Chen, Xinpu; Chenna, Venugopal; Maitra, Anirban; Devaraj, Sridevi (April 1, 2014). "Nanocurcumin attenuates inflammation by decreasing Toll-like receptor 2 and 4 expression and activity and promoting an anti-inflammatory macrophage phenotype (830.22)". The FASEB Journal. 28 (1_supplement): 830.22. doi:10.1096/fasebj.28.1_supplement.830.22. ISSN 0892-6638.
- ↑ Negishi, Hideo; Osawa, Tomoko; Ogami, Kentaro; Ouyang, Xinshou; Sakaguchi, Shinya; Koshiba, Ryuji; Yanai, Hideyuki; Seko, Yoshinori; Shitara, Hiroshi (December 23, 2008). "A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity". Proceedings of the National Academy of Sciences of the United States of America. 105 (51): 20446–20451. doi:10.1073/pnas.0810372105. ISSN 1091-6490. PMC 2629334. PMID 19074283.
- ↑ Guo, Yiqi; Audry, Magali; Ciancanelli, Michael; Alsina, Laia; Azevedo, Joana; Herman, Melina; Anguiano, Esperanza; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro (September 26, 2011). "Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity". The Journal of Experimental Medicine. 208 (10): 2083–2098. doi:10.1084/jem.20101568. ISSN 1540-9538. PMC 3182056. PMID 21911422.
- ↑ http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM334430.pdf
- ↑ 16.0 16.1 Doan, Thao; Melvold, Roger; Viselli, Susan; Valtenbaugh, Carl (August 28, 2012). Immunology. Lippincott Williams & Wilkins. ISBN 9781451109375.
- ↑ 17.0 17.1 17.2 Fairweather, DeLisa; Yusung, Susan; Frisancho, Sylvia; Barrett, Masheka; Gatewood, Shannon; Steele, Ronelle; Rose, Noel R. (May 1, 2003). "IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication". Journal of Immunology (Baltimore, Md.: 1950). 170 (9): 4731–4737. ISSN 0022-1767. PMID 12707353.
- ↑ 18.0 18.1 Triantafilou, Kathy; Triantafilou, Martha (October 2004). "Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4". Journal of Virology. 78 (20): 11313–11320. doi:10.1128/JVI.78.20.11313-11320.2004. ISSN 0022-538X. PMID 15452251.
- ↑ 19.0 19.1 Li, Hui; Li, Xiaoling; Wei, Yun; Tan, Yun; Liu, Xuefeng; Wu, Xinxing (February 13, 2009). "HSV-2 induces TLRs and NF-kappaB-dependent cytokines in cervical epithelial cells". Biochemical and Biophysical Research Communications. 379 (3): 686–690. doi:10.1016/j.bbrc.2008.12.150. ISSN 1090-2104. PMID 19124006.
- ↑ Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M.G.; Guerri, Consuelo (June 2011). "Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage". Brain, Behavior, and Immunity. 25: S80–S91. doi:10.1016/j.bbi.2011.02.012.
- ↑ Fox, Christopher B.; Friede, Martin; Reed, Steven G.; Ireton, Gregory C. (2010). "Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants". Sub-Cellular Biochemistry. 53: 303–321. doi:10.1007/978-90-481-9078-2_14. ISSN 0306-0225. PMID 20593273.
- ↑ http://www.medizin.uni-tuebingen.de/transfusionsmedizin/institut/eir/content/2014/94/article.pdf
- ↑ 23.0 23.1 Martin, Heather J.; Lee, Jae Myun; Walls, Dermot; Hayward, S. Diane (September 2007). "Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus". Journal of Virology. 81 (18): 9748–9758. doi:10.1128/JVI.01122-07. ISSN 0022-538X. PMC 2045431. PMID 17609264.
- ↑ van Gent, Michiel; Griffin, Bryan D.; Berkhoff, Eufemia G.; van Leeuwen, Daphne; Boer, Ingrid G.J.; Buisson, Marlyse; Hartgers, Franca C.; Burmeister, Wim P.; Wiertz, Emmanuel J. (February 1, 2011). "EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection". Journal of Immunology (Baltimore, Md.: 1950). 186 (3): 1694–1702. doi:10.4049/jimmunol.0903120. ISSN 1550-6606. PMID 21191071.
- ↑ Berdeli, Afig; Celik, Handan Ak; Ozyürek, Ruhi; Dogrusoz, Buket; Aydin, Hikmet Hakan (July 2005). "TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children". Journal of Molecular Medicine (Berlin, Germany). 83 (7): 535–541. doi:10.1007/s00109-005-0677-x. ISSN 0946-2716. PMID 15968536.
- ↑ O'Neill, Luke A. J.; Parker, Andrew E.; Hennessy, Elizabeth J. (April 2010). "Targeting Toll-like receptors: emerging therapeutics?". Nature Reviews Drug Discovery. 9 (4): 293–307. doi:10.1038/nrd3203. ISSN 1474-1784.