Long COVID pathophysiology: Difference between revisions

From MEpedia, a crowd-sourced encyclopedia of ME and CFS science and history
(→‎Notable studies: ref fixes, finish adding refs)
Line 7: Line 7:


=== Infection and immunity ===
=== Infection and immunity ===
A range of [[:Category:Antibodies|antibodies]] have been found in patients with persistent post-acute COVID symptoms. Elevated [[G-protein coupled receptor]] autoantibodies have been found.<ref>{{Cite journal|date=2021-01-01|title=Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms|url=https://www.sciencedirect.com/science/article/pii/S2589909021000204|journal=Journal of Translational Autoimmunity|language=en|volume=4|pages=100100|doi=10.1016/j.jtauto.2021.100100|issn=2589-9090}}</ref> One study founded elevated antinuclear antibody (ANA) titles in 43.6% of long COVID patients twelve months after symptom onset.<ref>{{Cite journal|last=Seeßle|first=Jessica|last2=Waterboer|first2=Tim|last3=Hippchen|first3=Theresa|last4=Simon|first4=Julia|last5=Kirchner|first5=Marietta|last6=Lim|first6=Adeline|last7=Müller|first7=Barbara|last8=Merle|first8=Uta|date=2021-07-05|title=Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study|url=https://doi.org/10.1093/cid/ciab611|journal=Clinical Infectious Diseases|issue=ciab611|doi=10.1093/cid/ciab611|issn=1058-4838}}</ref>
A range of [[:Category:Antibodies|antibodies]] have been found in patients with persistent post-acute COVID symptoms. Elevated [[G-protein coupled receptor]] autoantibodies have been found.<ref>{{Cite journal|date=2021-01-01|title=Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms|url=https://www.sciencedirect.com/science/article/pii/S2589909021000204|journal=Journal of Translational Autoimmunity|language=en|volume=4|pages=100100|doi=10.1016/j.jtauto.2021.100100|issn=2589-9090}}</ref> One study founded elevated antinuclear antibody (ANA) titles in 43.6% of long COVID patients twelve months after symptom onset.<ref>{{Cite journal|last=Seeßle|first=Jessica|last2=Waterboer|first2=Tim|last3=Hippchen|first3=Theresa|last4=Simon|first4=Julia|last5=Kirchner|first5=Marietta|last6=Lim|first6=Adeline|last7=Müller|first7=Barbara|last8=Merle|first8=Uta|date=2021-07-05|title=Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study|url=https://doi.org/10.1093/cid/ciab611|journal=Clinical Infectious Diseases|issue=ciab611|doi=10.1093/cid/ciab611|issn=1058-4838|pages=|pmc=|pmid=|quote=|author-link=|author-link2=|access-date=|author-link3=|author-link4=|author-link5=|author-link6=|via=|volume=}}</ref>


Long COVID may be associated [[herpesvirus]] reactivation such as [[Epstein-Barr virus|Epstein-Barr Virus]],<ref>{{Cite journal|last=Gold|first=Jeffrey E.|last2=Okyay|first2=Ramazan A.|last3=Licht|first3=Warren E.|last4=Hurley|first4=David J.|date=2021/6|title=Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation|url=https://www.mdpi.com/2076-0817/10/6/763|journal=Pathogens|language=en|volume=10|issue=6|pages=763|doi=10.3390/pathogens10060763}}</ref> which has been shown to cause elevations of certain G-protein coupled receptor autoantibody types.<ref>{{cite book|last1=Angelini|first1=Lucia|last2=Bardare|first2=Maria|last3=Martini|first3=Alberto|year=2002|title=Immune-mediated Disorders of the Central Nervous System in Children|url=https://books.google.com/books?id=5trQOK8hcZUC&pg=PA7&lpg=PA7&dq=coxsackie+b+acetylcholine&source=bl&ots=zhup8ZXq68&sig=CxDwQCHO8-OMBYkcp4EayjnDKnw&hl=en&sa=X&ved=0ahUKEwjflpmqg9fOAhWBeSYKHSR4Dh0Q6AEIMTAD#v=onepage&q=coxsackie%20b%20acetylcholine&f=false}}</ref><ref>{{Cite journal|last=Gebhardt|first=B. M.|date=2000-06-26|title=Evidence for antigenic cross-reactivity between herpesvirus and the acetylcholine receptor|url=http://www.ncbi.nlm.nih.gov/pubmed/10742556|journal=Journal of Neuroimmunology|volume=105|issue=2|pages=145–153|issn=0165-5728|pmid=10742556}}</ref><ref>{{Cite journal|last=Brenner|first=T.|last2=Timore|first2=Y.|last3=Wirguin|first3=I.|last4=Abramsky|first4=O.|last5=Steinitz|first5=M.|date=Oct 1989|title=In vitro synthesis of antibodies to acetylcholine receptor by Epstein-Barr virus-stimulated B-lymphocytes derived from patients with myasthenia gravis|url=http://www.ncbi.nlm.nih.gov/pubmed/2553772|journal=Journal of Neuroimmunology|volume=24|issue=3|pages=217–222|issn=0165-5728|pmid=2553772}}</ref><ref>{{Cite journal|last=Kaminski|first=Henry J.|last2=Janos|first2=Minarovits|title=Epstein-barr virus: Trigger for autoimmunity?|url=http://www.academia.edu/20258853/Epstein-barr_virus_Trigger_for_autoimmunity/|journal=Annals of Neurology|language=en|issn=0364-5134}}</ref>
Long COVID may be associated [[herpesvirus]] reactivation such as [[Epstein-Barr virus|Epstein-Barr Virus]],<ref>{{Cite journal|last=Gold|first=Jeffrey E.|last2=Okyay|first2=Ramazan A.|last3=Licht|first3=Warren E.|last4=Hurley|first4=David J.|date=Jun 2021|title=Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation|url=https://www.mdpi.com/2076-0817/10/6/763|journal=Pathogens|language=en|volume=10|issue=6|pages=763|doi=10.3390/pathogens10060763|pmc=|pmid=|quote=|author-link=|author-link2=|access-date=|author-link3=|author-link4=|via=}}</ref> which has been shown to cause elevations of certain G-protein coupled receptor autoantibody types.<ref>{{cite book|last2=Albani|first2=Salvatore|last3=|first3=|title=Immune-mediated Disorders of the Central Nervous System in Children|url=https://books.google.com/books?id=5trQOK8hcZUC&pg=PA7&lpg=PA7&dq=coxsackie+b+acetylcholine&source=bl&ots=zhup8ZXq68&sig=CxDwQCHO8-OMBYkcp4EayjnDKnw&hl=en&sa=X&ved=0ahUKEwjflpmqg9fOAhWBeSYKHSR4Dh0Q6AEIMTAD#v=onepage&q=coxsackie%20b%20acetylcholine&f=false|pages=7|isbn=0861966317|edition=|volume=10|language=|title-link=|access-date=|date=2002|publisher=John Libbey Eurotext|last=Giannoni|first=Francesca|author-link=|author-link2=|author-link3=|last4=|first4=|author-link4=|last5=|first5=|author-link5=|last6=|first6=|author-link6=|last7=|first7=|author-link7=|last8=|first8=|author-link8=|last9=|first9=|author-link9=|veditors=|others=|doi=|oclc=|quote=|archive-url=|archive-date=|location=|editor-last=Angelini|editor-first=Lucia|editor1-link=|editor-last2=Bardare|editor-first2=Maria|series=Mariani Foundation paediatric neurology|editor-last3=Martini|editor-first3=Alberto|editor-last4=Pierfranco|editor-first4=Fondazione|editor-last5=Mariani|editor-first5=Luisa|chapter=Molecular mimicry and autoimmunity}}</ref><ref>{{Cite journal|last=Gebhardt|first=B. M.|date=2000-06-26|title=Evidence for antigenic cross-reactivity between herpesvirus and the acetylcholine receptor|url=http://www.ncbi.nlm.nih.gov/pubmed/10742556|journal=Journal of Neuroimmunology|volume=105|issue=2|pages=145–153|issn=0165-5728|pmid=10742556}}</ref><ref>{{Cite journal|last=Brenner|first=T.|last2=Timore|first2=Y.|last3=Wirguin|first3=I.|last4=Abramsky|first4=O.|last5=Steinitz|first5=M.|date=Oct 1989|title=In vitro synthesis of antibodies to acetylcholine receptor by Epstein-Barr virus-stimulated B-lymphocytes derived from patients with myasthenia gravis|url=http://www.ncbi.nlm.nih.gov/pubmed/2553772|journal=Journal of Neuroimmunology|volume=24|issue=3|pages=217–222|issn=0165-5728|pmid=2553772}}</ref><ref>{{Cite journal|last=Kaminski|first=Henry J.|last2=Janos|first2=Minarovits|title=Epstein-barr virus: Trigger for autoimmunity?|url=http://www.academia.edu/20258853/Epstein-barr_virus_Trigger_for_autoimmunity/|journal=Annals of Neurology|language=en|issn=0364-5134}}</ref>


=== Neurological and neuropsychiatric ===
=== Neurological and neuropsychiatric ===
Line 79: Line 79:


==Notable studies ==
==Notable studies ==
*2021, <sup>18</sup>F-FDG brain PET hypometabolism in patients with long COVID<ref name="Guedj2021">https://link.springer.com/article/10.1007/s00259-021-05215-4</ref> [https://link.springer.com/article/10.1007/s00259-021-05215-4 (Full text)]
*2021, <sup>18</sup>F-FDG brain PET hypometabolism in patients with long COVID<ref name="Guedj2021">{{Cite journal|last=Guedj|first=E.|last2=Campion|first2=J. Y.|last3=Dudouet|first3=P.|last4=Kaphan|first4=E.|last5=Bregeon|first5=F.|last6=Tissot-Dupont|first6=H.|last7=Guis|first7=S.|last8=Barthelemy|first8=F.|last9=Habert|first9=P.|date=2021-08-01|title=18F-FDG brain PET hypometabolism in patients with long COVID|url=https://doi.org/10.1007/s00259-021-05215-4|journal=European Journal of Nuclear Medicine and Molecular Imaging|language=en|volume=48|issue=9|pages=2823–2833|doi=10.1007/s00259-021-05215-4|issn=1619-7089|pmc=PMC7837643|pmid=33501506}}</ref> [https://link.springer.com/article/10.1007/s00259-021-05215-4 (Full text)]
*2021, Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients<ref name="Blitshteyn2021">https://link.springer.com/article/10.1007%2Fs12026-021-09185-5</ref> [https://link.springer.com/article/10.1007%2Fs12026-021-09185-5 (Full text)]
*2021, Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients<ref name="Blitshteyn2021">{{Cite journal|last=Blitshteyn|first=Svetlana|last2=Whitelaw|first2=Sera|date=2021-04-01|title=Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients|url=https://doi.org/10.1007/s12026-021-09185-5|journal=Immunologic Research|language=en|volume=69|issue=2|pages=205–211|doi=10.1007/s12026-021-09185-5|issn=1559-0755|pmc=PMC8009458|pmid=33786700}}</ref> [https://link.springer.com/article/10.1007%2Fs12026-021-09185-5 (Full text)]
*2021, Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID<ref name="Bitirgen2021">https://bjo.bmj.com/content/early/2021/07/08/bjophthalmol-2021-319450</ref>  [https://bjo.bmj.com/content/early/2021/07/08/bjophthalmol-2021-319450 (Full text)]
*2021, Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID<ref name="Bitirgen2021">{{Cite journal|last=Bitirgen|first=Gulfidan|last2=Korkmaz|first2=Celalettin|last3=Zamani|first3=Adil|last4=Ozkagnici|first4=Ahmet|last5=Zengin|first5=Nazmi|last6=Ponirakis|first6=Georgios|last7=Malik|first7=Rayaz A.|date=2021-07-08|title=Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID|url=https://bjo.bmj.com/content/early/2021/07/08/bjophthalmol-2021-319450|journal=British Journal of Ophthalmology|language=en|doi=10.1136/bjophthalmol-2021-319450|issn=0007-1161|pmid=34312122}}</ref>  [https://bjo.bmj.com/content/early/2021/07/08/bjophthalmol-2021-319450 (Full text)]
*2021, Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19<ref name="Yeoh2021">https://gut.bmj.com/content/70/4/698</ref> [https://gut.bmj.com/content/70/4/698 (Full text)] - Pre-print
*2021, Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19<ref name="Yeoh2021">https://gut.bmj.com/content/70/4/698</ref> [https://gut.bmj.com/content/70/4/698 (Full text)] - Pre-print
*2021, Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin<ref name="Pretorius2021">https://www.medrxiv.org/content/10.1101/2021.05.21.21257578v2</ref>  [https://www.medrxiv.org/content/10.1101/2021.05.21.21257578v2 (Full text)] - Pre-print
*2021, Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin<ref name="Pretorius2021">{{Cite journal|last=Pretorius|first=Etheresia|last2=Vlok|first2=Mare|last3=Venter|first3=Chantelle|last4=Bezuidenhout|first4=Johannes A.|last5=Laubscher|first5=Gert Jacobus|last6=Steenkamp|first6=Janami|last7=Kell|first7=Douglas B.|date=2021-05-24|title=Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin|url=https://www.medrxiv.org/content/10.1101/2021.05.21.21257578v2|journal=medRxiv|language=en|pages=2021.05.21.21257578|doi=10.1101/2021.05.21.21257578}}</ref>  [https://www.medrxiv.org/content/10.1101/2021.05.21.21257578v2 (Full text)] - Pre-print
*2021, Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection<ref name="Phetsouphanh">https://www.medrxiv.org/content/10.1101/2021.06.01.21257759v1</ref>  [https://www.medrxiv.org/content/10.1101/2021.06.01.21257759v1 (Full text)] - Pre-print
*2021, Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection<ref name="Phetsouphanh">{{Cite journal|last=Phetsouphanh|first=Chansavath|last2=Darley|first2=David|last3=Howe|first3=Anette|last4=Munier|first4=C. Mee Ling|last5=Patel|first5=Sheila K.|last6=Juno|first6=Jenifer A.|last7=Burrell|first7=Louise M.|last8=Kent|first8=Stephen J.|last9=Dore|first9=Gregory J.|date=2021-06-03|title=Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection|url=https://www.medrxiv.org/content/10.1101/2021.06.01.21257759v1|journal=medRxiv|language=en|pages=2021.06.01.21257759|doi=10.1101/2021.06.01.21257759}}</ref>  [https://www.medrxiv.org/content/10.1101/2021.06.01.21257759v1 (Full text)] - Pre-print
*2021, Clinical characterization of dysautonomia in long COVID-19 patients<ref name="Barizien2021">https://www.nature.com/articles/s41598-021-93546-5</ref>  [https://www.nature.com/articles/s41598-021-93546-5 (Full text)]
*2021, Clinical characterization of dysautonomia in long COVID-19 patients<ref name="Barizien2021">{{Cite journal|last=Barizien|first=Nicolas|last2=Le Guen|first2=Morgan|last3=Russel|first3=Stéphanie|last4=Touche|first4=Pauline|last5=Huang|first5=Florent|last6=Vallée|first6=Alexandre|date=2021-07-07|title=Clinical characterization of dysautonomia in long COVID-19 patients|url=https://www.nature.com/articles/s41598-021-93546-5|journal=Scientific Reports|language=en|volume=11|issue=1|pages=14042|doi=10.1038/s41598-021-93546-5|issn=2045-2322}}</ref>  [https://www.nature.com/articles/s41598-021-93546-5 (Full text)]
*2021, Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing<ref name="Singh2021">https://journal.chestnet.org/article/S0012-3692(21)03635-7/fulltext</ref>  [https://journal.chestnet.org/article/S0012-3692(21)03635-7/fulltext (Full text)]
*2021, Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing<ref name="Singh2021">{{Cite journal|last=Singh|first=Inderjit|author-link=|last2=Joseph|first2=Phillip|author-link2=|last3=Heerdt|first3=Paul M.|author-link3=|last4=Cullinan|first4=Marjorie|author-link4=|last5=Lutchmansingh|first5=Denyse D.|author-link5=|last6=Gulati|first6=Mridu|author-link6=|last7=Possick|first7=Jennifer D.|last8=Systrom|first8=David M.|author-link8=David Systrom|last9=Waxman|first9=Aaron B.|date=2021-08-10|title=Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing.|url=https://journal.chestnet.org/article/S0012-3692(21)03635-7/abstract|journal=CHEST|language=English|volume=|issue=|pages=|doi=10.1016/j.chest.2021.08.010|issn=0012-3692|pmc=|pmid=|access-date=|quote=|via=}}</ref>  [https://journal.chestnet.org/article/S0012-3692(21)03635-7/fulltext (Full text)]
*2021, Persistent Endotheliopathy in the Pathogenesis of Long COVID Syndrome<ref name="Fogarty2021">https://onlinelibrary.wiley.com/doi/epdf/10.1111/jth.15490</ref>  [https://onlinelibrary.wiley.com/doi/epdf/10.1111/jth.15490 (Full text)]
*2021, Persistent Endotheliopathy in the Pathogenesis of Long COVID Syndrome<ref name="Fogarty2021">https://onlinelibrary.wiley.com/doi/epdf/10.1111/jth.15490</ref>  [https://onlinelibrary.wiley.com/doi/epdf/10.1111/jth.15490 (Full text)]
*2021, Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms<ref name="Proal2021">{{Cite journal|last=Proal|first=Amy D.|author-link=Amy Proal|last2=VanElzakker|first2=Michael B.|author-link2=Michael VanElzakker|date=2021|title=Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms|url=https://www.frontiersin.org/articles/10.3389/fmicb.2021.698169/full|journal=Frontiers in Microbiology|language=English|volume=|issue=|pages=|doi=10.3389/fmicb.2021.698169|issn=1664-302X|pmc=8260991|pmid=34248921|access-date=|quote=|via=}}</ref> [https://doi.org/10.1101/2020.12.24.20248802 (Full text)]
*2021, Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms<ref name="Proal2021">{{Cite journal|last=Proal|first=Amy D.|author-link=Amy Proal|last2=VanElzakker|first2=Michael B.|author-link2=Michael VanElzakker|date=2021|title=Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms|url=https://www.frontiersin.org/articles/10.3389/fmicb.2021.698169/full|journal=Frontiers in Microbiology|language=English|volume=|issue=|pages=|doi=10.3389/fmicb.2021.698169|issn=1664-302X|pmc=8260991|pmid=34248921|access-date=|quote=|via=}}</ref> [https://doi.org/10.1101/2020.12.24.20248802 (Full text)]
*2020, Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria<ref name="PMC7737559">{{Cite journal|last=Raveendran|first=A.V.|date=2021|title=Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737559/|journal=Diabetes & Metabolic Syndrome|volume=15|issue=1|pages=145–146|doi=10.1016/j.dsx.2020.12.025|issn=1871-4021|pmc=7737559|pmid=33341598}}</ref> [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737559/ (Full text)]
*2020, Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria<ref name="PMC7737559">{{Cite journal|last=Raveendran|first=A.V.|date=2021|title=Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737559/|journal=Diabetes & Metabolic Syndrome|volume=15|issue=1|pages=145–146|doi=10.1016/j.dsx.2020.12.025|issn=1871-4021|pmc=7737559|pmid=33341598}}</ref> [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737559/ (Full text)]
*2020, Multi-organ impairment in low-risk individuals with long COVID<ref name="Dennis2020">{{Cite journal|last=Dennis|first=Andrea|author-link=|last2=Wamil|first2=Malgorzata|author-link2=|last3=Kapur|first3=Sandeep|author-link3=|last4=Alberts|first4=Johann|author-link4=|last5=Badley|first5=Andrew D.|author-link5=|last6=Decker|first6=Gustav Anton|author-link6=|last7=Rizza|first7=Stacey A.|last8=Banerjee|first8=Rajarshi|last9=Banerjee|first9=Amitava|author-link9=|date=2020-10-16|title=Multi-organ impairment in low-risk individuals with long COVID|url=https://www.medrxiv.org/content/10.1101/2020.10.14.20212555v1|journal=medRxiv|language=en|volume=|issue=|pages=2020.10.14.20212555|doi=10.1101/2020.10.14.20212555|pmc=|pmid=|access-date=|quote=|via=}}</ref> [https://doi.org/10.1101/2020.10.14.20212555 (Full text)] - Pre-print
*2020, Multi-organ impairment in low-risk individuals with long COVID<ref name="Dennis2020">{{Cite journal|last=Dennis|first=Andrea|author-link=|last2=Wamil|first2=Malgorzata|author-link2=|last3=Kapur|first3=Sandeep|author-link3=|last4=Alberts|first4=Johann|author-link4=|last5=Badley|first5=Andrew D.|author-link5=|last6=Decker|first6=Gustav Anton|author-link6=|last7=Rizza|first7=Stacey A.|last8=Banerjee|first8=Rajarshi|last9=Banerjee|first9=Amitava|author-link9=|date=2020-10-16|title=Multi-organ impairment in low-risk individuals with long COVID|url=https://www.medrxiv.org/content/10.1101/2020.10.14.20212555v1|journal=medRxiv|language=en|volume=|issue=|pages=2020.10.14.20212555|doi=10.1101/2020.10.14.20212555|pmc=|pmid=|access-date=|quote=|via=}}</ref> [https://doi.org/10.1101/2020.10.14.20212555 (Full text)] - Pre-print
*2020, Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid)<ref name="NIHR15Oct2020">{{Cite web|url=https://evidence.nihr.ac.uk/themedreview/living-with-covid19|title=Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid).|last=NIHR|first=|authorlink=|last2=|first2=|authorlink2=|date=Oct 2020|doi=10.3310/themedreview_41169
*2020, Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid)<ref name="NIHR15Oct2020">{{Cite web|url=https://evidence.nihr.ac.uk/themedreview/living-with-covid19|title=Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid).|last=National Institute for Health Research|first=|authorlink=National Institute for Health Research|last2=|first2=|authorlink2=|date=Oct 2020|doi=10.3310/themedreview_41169
|website=evidence.nihr.ac.uk|language=en-GB|archive-url=|archive-date=|url-status=|access-date=2020-10-15}}</ref> [https://evidence.nihr.ac.uk/themedreview/living-with-covid19 (Full text)]
|website=National Institute for Health Research|language=en-GB|archive-url=|archive-date=|url-status=|access-date=2020-10-15}}</ref> [https://evidence.nihr.ac.uk/themedreview/living-with-covid19 (Full text)]


== News and articles ==
== News and articles ==

Revision as of 11:21, August 13, 2021

Long COVIDlong tail covidPost-Acute Sequelae of COVID-19 (PASC)post-acute COVID-19 and ongoing COVID are terms used to describe a group of long term health problems that are found in a significant minority of people who developed COVID-19 and remain ill a number of weeks or months later.

Overview[edit | edit source]

Pathophysiology[edit | edit source]

Infection and immunity[edit | edit source]

A range of antibodies have been found in patients with persistent post-acute COVID symptoms. Elevated G-protein coupled receptor autoantibodies have been found.[1] One study founded elevated antinuclear antibody (ANA) titles in 43.6% of long COVID patients twelve months after symptom onset.[2]

Long COVID may be associated herpesvirus reactivation such as Epstein-Barr Virus,[3] which has been shown to cause elevations of certain G-protein coupled receptor autoantibody types.[4][5][6][7]

Neurological and neuropsychiatric[edit | edit source]

Cardiovascular[edit | edit source]

Pulmonary[edit | edit source]

In a single cardiopulmonary exercise test, Post-COVID-19 patients exhibited markedly reduced peak exercise aerobic capacity (VO2) compared to controls and impaired oxygen extraction, even in those without cardiopulmonary disease.[8]

Comparison to other conditions[edit | edit source]

Findings Long COVID Post-acute SARS ME/CFS POTS MCAS
G-protein coupled receptor autoantibodies β2- and α1-adrenoceptors, angiotensin II AT1-, muscarinic M2-, MAS-, nociceptin- and ETA-receptors M3 and M4 muscarinic acetylcholine receptors, as well as ß2 adrenergic receptors α1, β1 and β2 adrenergic receptor autoantibodies

Post-SARS syndrome[edit | edit source]

ME/CFS[edit | edit source]

Postviral fatigue syndrome[edit | edit source]

Chronic fatigue and Idiopathic chronic fatigue[edit | edit source]

POTS[edit | edit source]

MCAS[edit | edit source]

Post-Ebola syndrome[edit | edit source]

Chronic Epstein-Barr virus[edit | edit source]

Alzheimer's disease[edit | edit source]

Traumatic Brain Injury[edit | edit source]

Notable studies[edit | edit source]

  • 2021, 18F-FDG brain PET hypometabolism in patients with long COVID[9] (Full text)
  • 2021, Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients[10] (Full text)
  • 2021, Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID[11] (Full text)
  • 2021, Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19[12] (Full text) - Pre-print
  • 2021, Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin[13] (Full text) - Pre-print
  • 2021, Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection[14] (Full text) - Pre-print
  • 2021, Clinical characterization of dysautonomia in long COVID-19 patients[15] (Full text)
  • 2021, Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing[16] (Full text)
  • 2021, Persistent Endotheliopathy in the Pathogenesis of Long COVID Syndrome[17] (Full text)
  • 2021, Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms[18] (Full text)
  • 2020, Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria[19] (Full text)
  • 2020, Multi-organ impairment in low-risk individuals with long COVID[20] (Full text) - Pre-print
  • 2020, Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid)[21] (Full text)

News and articles[edit | edit source]

Learn more[edit | edit source]

See also[edit | edit source]

References[edit | edit source]

  1. "Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms". Journal of Translational Autoimmunity. 4: 100100. January 1, 2021. doi:10.1016/j.jtauto.2021.100100. ISSN 2589-9090.
  2. Seeßle, Jessica; Waterboer, Tim; Hippchen, Theresa; Simon, Julia; Kirchner, Marietta; Lim, Adeline; Müller, Barbara; Merle, Uta (July 5, 2021). "Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study". Clinical Infectious Diseases (ciab611). doi:10.1093/cid/ciab611. ISSN 1058-4838.
  3. Gold, Jeffrey E.; Okyay, Ramazan A.; Licht, Warren E.; Hurley, David J. (June 2021). "Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation". Pathogens. 10 (6): 763. doi:10.3390/pathogens10060763.
  4. Giannoni, Francesca; Albani, Salvatore (2002). "Molecular mimicry and autoimmunity". In Angelini, Lucia; Bardare, Maria; Martini, Alberto; Pierfranco, Fondazione; Mariani, Luisa (eds.). Immune-mediated Disorders of the Central Nervous System in Children. Mariani Foundation paediatric neurology. 10. John Libbey Eurotext. p. 7. ISBN 0861966317.
  5. Gebhardt, B. M. (June 26, 2000). "Evidence for antigenic cross-reactivity between herpesvirus and the acetylcholine receptor". Journal of Neuroimmunology. 105 (2): 145–153. ISSN 0165-5728. PMID 10742556.
  6. Brenner, T.; Timore, Y.; Wirguin, I.; Abramsky, O.; Steinitz, M. (October 1989). "In vitro synthesis of antibodies to acetylcholine receptor by Epstein-Barr virus-stimulated B-lymphocytes derived from patients with myasthenia gravis". Journal of Neuroimmunology. 24 (3): 217–222. ISSN 0165-5728. PMID 2553772.
  7. Kaminski, Henry J.; Janos, Minarovits. "Epstein-barr virus: Trigger for autoimmunity?". Annals of Neurology. ISSN 0364-5134.
  8. Singh, Inderjit; Joseph, Phillip; Heerdt, Paul M.; Cullinan, Marjorie; Lutchmansingh, Denyse D.; Gulati, Mridu; Possick, Jennifer D.; Systrom, David M.; Waxman, Aaron B. (August 10, 2021). "Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing". CHEST. 0 (0). doi:10.1016/j.chest.2021.08.010. ISSN 0012-3692.
  9. Guedj, E.; Campion, J. Y.; Dudouet, P.; Kaphan, E.; Bregeon, F.; Tissot-Dupont, H.; Guis, S.; Barthelemy, F.; Habert, P. (August 1, 2021). "18F-FDG brain PET hypometabolism in patients with long COVID". European Journal of Nuclear Medicine and Molecular Imaging. 48 (9): 2823–2833. doi:10.1007/s00259-021-05215-4. ISSN 1619-7089. PMC 7837643. PMID 33501506.
  10. Blitshteyn, Svetlana; Whitelaw, Sera (April 1, 2021). "Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients". Immunologic Research. 69 (2): 205–211. doi:10.1007/s12026-021-09185-5. ISSN 1559-0755. PMC 8009458. PMID 33786700.
  11. Bitirgen, Gulfidan; Korkmaz, Celalettin; Zamani, Adil; Ozkagnici, Ahmet; Zengin, Nazmi; Ponirakis, Georgios; Malik, Rayaz A. (July 8, 2021). "Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID". British Journal of Ophthalmology. doi:10.1136/bjophthalmol-2021-319450. ISSN 0007-1161. PMID 34312122.
  12. https://gut.bmj.com/content/70/4/698
  13. Pretorius, Etheresia; Vlok, Mare; Venter, Chantelle; Bezuidenhout, Johannes A.; Laubscher, Gert Jacobus; Steenkamp, Janami; Kell, Douglas B. (May 24, 2021). "Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin". medRxiv: 2021.05.21.21257578. doi:10.1101/2021.05.21.21257578.
  14. Phetsouphanh, Chansavath; Darley, David; Howe, Anette; Munier, C. Mee Ling; Patel, Sheila K.; Juno, Jenifer A.; Burrell, Louise M.; Kent, Stephen J.; Dore, Gregory J. (June 3, 2021). "Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection". medRxiv: 2021.06.01.21257759. doi:10.1101/2021.06.01.21257759.
  15. Barizien, Nicolas; Le Guen, Morgan; Russel, Stéphanie; Touche, Pauline; Huang, Florent; Vallée, Alexandre (July 7, 2021). "Clinical characterization of dysautonomia in long COVID-19 patients". Scientific Reports. 11 (1): 14042. doi:10.1038/s41598-021-93546-5. ISSN 2045-2322.
  16. Singh, Inderjit; Joseph, Phillip; Heerdt, Paul M.; Cullinan, Marjorie; Lutchmansingh, Denyse D.; Gulati, Mridu; Possick, Jennifer D.; Systrom, David M.; Waxman, Aaron B. (August 10, 2021). "Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing". CHEST. doi:10.1016/j.chest.2021.08.010. ISSN 0012-3692.
  17. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jth.15490
  18. Proal, Amy D.; VanElzakker, Michael B. (2021). "Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms". Frontiers in Microbiology. doi:10.3389/fmicb.2021.698169. ISSN 1664-302X. PMC 8260991. PMID 34248921.
  19. Raveendran, A.V. (2021). "Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria". Diabetes & Metabolic Syndrome. 15 (1): 145–146. doi:10.1016/j.dsx.2020.12.025. ISSN 1871-4021. PMC 7737559. PMID 33341598.
  20. Dennis, Andrea; Wamil, Malgorzata; Kapur, Sandeep; Alberts, Johann; Badley, Andrew D.; Decker, Gustav Anton; Rizza, Stacey A.; Banerjee, Rajarshi; Banerjee, Amitava (October 16, 2020). "Multi-organ impairment in low-risk individuals with long COVID". medRxiv: 2020.10.14.20212555. doi:10.1101/2020.10.14.20212555.
  21. National Institute for Health Research (October 2020). "Living with covid-19. A dynamic review of the evidence around ongoing covid-19 symptoms (often called long covid)". National Institute for Health Research. doi:10.3310/themedreview_41169. Retrieved October 15, 2020.