Mitochondrion: Difference between revisions

From MEpedia, a crowd-sourced encyclopedia of ME and CFS science and history
(added name to ref)
(→‎Biogenesis: Added another primary means of stimulating mitochondria)
Line 3: Line 3:
==Biogenesis==
==Biogenesis==


Mitochondria biogenesis (the creation of new mitochondria) can be increased via [[hormesis]], the exposure of the body to short-term stressors. Healthy stressor include [[exercise]], [[fasting]], [[cryotherapy|cold]], and [[thermotherapy|heat]]. [[Resveratrol]] can also increase mitochondrial biogenesis.
Mitochondria biogenesis (the creation of new mitochondria) can be increased via [[hormesis]], the exposure of the body to short-term stressors. Healthy stressors include [[exercise]], [[fasting]], [[cryotherapy|cold]], [[thermotherapy|heat]] and light. [[Resveratrol]] can also increase mitochondrial biogenesis.


==Immunity==
==Immunity==
Line 13: Line 13:
Infection with pathogens, including viruses, bacteria, and parasites, can all induce changes in mitochondrial function and energy metabolism.
Infection with pathogens, including viruses, bacteria, and parasites, can all induce changes in mitochondrial function and energy metabolism.


Viruses can induce or inhibit mitochondrial processes in order to replicate. "Viruses like [[Herpes simplex virus]] 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus and Hepatitis C Virus, hijack the host mitochondrial proteins to function fully inside the host cell."<ref name="Anand2013"/><ref name="Siu2016"/>  [[Hepatitis C]] has also been shown to "fragment host mitochondria".<ref name="Siu2016"/>
Viruses can induce or inhibit mitochondrial processes in order to replicate. "Viruses like [[Herpes simplex virus]] 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus and Hepatitis C Virus, hijack the host mitochondrial proteins to function fully inside the host cell."<ref name="Anand2013" /><ref name="Siu2016" />  [[Hepatitis C]] has also been shown to "fragment host mitochondria".<ref name="Siu2016" />


Parasites such as ''[[Toxoplasma gondii]]'' have also been shown to modulate host energy metabolism and dysregulate mitochondrial function,<ref name="Saric2009"/>, as have bacteria <ref name="Rudel2010"/> such as ''[[E. coli]]'', which has been shown to modulate mitochondrial receptor function.<ref name="Nagai2005"/>
Parasites such as ''[[Toxoplasma gondii]]'' have also been shown to modulate host energy metabolism and dysregulate mitochondrial function,<ref name="Saric2009" />, as have bacteria <ref name="Rudel2010" /> such as ''[[E. coli]]'', which has been shown to modulate mitochondrial receptor function.<ref name="Nagai2005" />


Mitochondrial disease has a high prevalence of fatigue and debilitation.<ref name="Gorman2015"/>
Mitochondrial disease has a high prevalence of fatigue and debilitation.<ref name="Gorman2015" />


=== Chronic fatigue syndrome ===
=== Chronic fatigue syndrome ===


There is evidence of mitochondrial dysfunction in [[Chronic Fatigue Syndrome]] patients. Muscle biopsies have shown evidence of mitochondrial degeneration <ref name="Behan1991"/>, deletions of mitochondrial DNA <ref name="Vecchiet1996"/><ref name="ZhangC1995"/>, the reduction of mitochondrial activity <ref name="Vecchiet1996"/>, and [[Sarah Myhill]] found measurable mitochondrial dysfunction correlating with severity of illness.<ref name="Booth2012"/><ref name="Myhill2009"/> Myhill also produced improvement by targeting those dysfunctions.<ref name="Myhill2013"/>  Mitochondrial DNA variants correlate with symptoms, symptom clusters & symptom severity.<ref name="BillingRoss2016"/>
There is evidence of mitochondrial dysfunction in [[Chronic Fatigue Syndrome]] patients. Muscle biopsies have shown evidence of mitochondrial degeneration <ref name="Behan1991" />, deletions of mitochondrial DNA <ref name="Vecchiet1996" /><ref name="ZhangC1995" />, the reduction of mitochondrial activity <ref name="Vecchiet1996" />, and [[Sarah Myhill]] found measurable mitochondrial dysfunction correlating with severity of illness.<ref name="Booth2012" /><ref name="Myhill2009" /> Myhill also produced improvement by targeting those dysfunctions.<ref name="Myhill2013" />  Mitochondrial DNA variants correlate with symptoms, symptom clusters & symptom severity.<ref name="BillingRoss2016" />


[[Mitochondrial disorders]] can be mistaken for [[Chronic Fatigue Syndrome]].<ref name="Galán2015"/>
[[Mitochondrial disorders]] can be mistaken for [[Chronic Fatigue Syndrome]].<ref name="Galán2015" />


There is evidence of genetic risk factors for mitochondrial dysfunction in related diseases such as complex regional pain syndrome, postural orthostatic tachycardia syndrome ([[POTS]]), and [[dysautonomia]].<ref name="Boles2015"/>
There is evidence of genetic risk factors for mitochondrial dysfunction in related diseases such as complex regional pain syndrome, postural orthostatic tachycardia syndrome ([[POTS]]), and [[dysautonomia]].<ref name="Boles2015" />


==Potential treatment==
==Potential treatment==
[[Garth Nicolson]] has proposed that mitochondrial [[lipid replacement therapy]] can ameliorate mitochondrial related fatigue using a proprietary blend of phospholipids called [[NT Factor]].
[[Garth Nicolson]] has proposed that mitochondrial [[lipid replacement therapy]] can ameliorate mitochondrial related fatigue using a proprietary blend of phospholipids called [[NT Factor]].


[[Courtney Craig]] has proposed treatment of mitochondrial damage in [[ME/CFS]] patients using [[fasting]], [[caloric restriction]] and a [[ketogenic diet]].<ref name="Craig2015"/>
[[Courtney Craig]] has proposed treatment of mitochondrial damage in [[ME/CFS]] patients using [[fasting]], [[caloric restriction]] and a [[ketogenic diet]].<ref name="Craig2015" />


==Notable studies==
==Notable studies==
*2016, [https://www.ncbi.nlm.nih.gov/pubmed/27389587 Exercise-induced mitochondrial dysfunction: a myth or reality?]
*2016, [https://www.ncbi.nlm.nih.gov/pubmed/27389587 Exercise-induced mitochondrial dysfunction: a myth or reality?]
*2016, [https://www.ncbi.nlm.nih.gov/pubmed/25788480 Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts]
*2016, [https://www.ncbi.nlm.nih.gov/pubmed/25788480 Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts]
Line 39: Line 40:


==Videos==
==Videos==
*[https://www.youtube.com/watch?v=uSlEmBeHlgg "Mitochondria: The Powerhouse of the Cell" by Bozeman Science]
*[https://www.youtube.com/watch?v=uSlEmBeHlgg "Mitochondria: The Powerhouse of the Cell" by Bozeman Science]


==Learn more==
==Learn more==
*[https://en.wikipedia.org/wiki/Mitochondrion Wikipedia - Mitochondrion]
*[https://en.wikipedia.org/wiki/Mitochondrion Wikipedia - Mitochondrion]
*2016, [http://www.labroots.com/trending/immunology/3536/immune-system-conserves-energy-altering-metabolism Immune System Conserves Energy By Altering Metabolism]
*2016, [http://www.labroots.com/trending/immunology/3536/immune-system-conserves-energy-altering-metabolism Immune System Conserves Energy By Altering Metabolism]
Line 51: Line 54:


==See also==
==See also==
*[[Cellular respiration]]
*[[Cellular respiration]]
*[[Sarah Myhill]]
*[[Sarah Myhill]]
Line 63: Line 67:
== Unused Citations ==
== Unused Citations ==


Armstrong2014 <ref name="Armstrong2014"/>
Armstrong2014 <ref name="Armstrong2014" />
Vermeulen2010 <ref name="Vermeulen2010"/>
Vermeulen2010 <ref name="Vermeulen2010" />
Maes2009 <ref name="Maes2009"/>
Maes2009 <ref name="Maes2009" />
Morris2013 <ref name="Morris2013"/>.
Morris2013 <ref name="Morris2013" />.
Morris2014 <ref name="Morris2014"/>
Morris2014 <ref name="Morris2014" />
Meeus2013 <ref name="Meeus2013"/>
Meeus2013 <ref name="Meeus2013" />


<---+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0 -->
<---+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0 -->
Line 82: Line 86:
| url    = http://www.hindawi.com/journals/av/2013/738794/abs/
| url    = http://www.hindawi.com/journals/av/2013/738794/abs/
}}</ref>
}}</ref>
<ref name="Behan1991">{{citation
<ref name="Behan1991">{{citation
| last1  = Behan            | first1 = WMH                | authorlink1 = Wilhelmina Behan
| last1  = Behan            | first1 = WMH                | authorlink1 = Wilhelmina Behan
Line 93: Line 96:
| url    = http://www.ncbi.nlm.nih.gov/pubmed/1792865/  
| url    = http://www.ncbi.nlm.nih.gov/pubmed/1792865/  
}}</ref>
}}</ref>
<ref name="BillingRoss2016">{{citation
<ref name="BillingRoss2016">{{citation
| last1  = Billing-Ross    | first1 = Paul              | authorlink1 = Paul Billing-Ross
| last1  = Billing-Ross    | first1 = Paul              | authorlink1 = Paul Billing-Ross
Line 109: Line 111:
| lay-url = http://hansonlab.org/research/cfs_me/mitochondria/
| lay-url = http://hansonlab.org/research/cfs_me/mitochondria/
}}</ref>
}}</ref>
<ref name="Boles2015">{{citation
<ref name="Boles2015">{{citation
| last1  = Boles            | first1 = RG                | authorlink1 = Richard Boles
| last1  = Boles            | first1 = RG                | authorlink1 = Richard Boles
Line 124: Line 125:
| url    = http://www.sciencedirect.com/science/article/pii/S1567724915000483
| url    = http://www.sciencedirect.com/science/article/pii/S1567724915000483
}}</ref>
}}</ref>
<ref name="Booth2012">{{citation
<ref name="Booth2012">{{citation
| last1  = Booth            | first1 = NE                | authorlink1 = Norman Booth
| last1  = Booth            | first1 = NE                | authorlink1 = Norman Booth
Line 135: Line 135:
| url    = http://www.ncbi.nlm.nih.gov/pubmed/22837795
| url    = http://www.ncbi.nlm.nih.gov/pubmed/22837795
}}</ref>
}}</ref>
<ref name="Craig2015">{{citation
<ref name="Craig2015">{{citation
| last1  = Craig            | first1 = Courtney          | authorlink1 = Courtney Craig
| last1  = Craig            | first1 = Courtney          | authorlink1 = Courtney Craig
Line 145: Line 144:
| url    = http://www.medical-hypotheses.com/article/S0306-9877(15)00318-7/abstract
| url    = http://www.medical-hypotheses.com/article/S0306-9877(15)00318-7/abstract
}}</ref>
}}</ref>
<ref name="Galán2015">{{citation
<ref name="Galán2015">{{citation
| last1  = Galán            | first1 = Fernando          | authorlink1 =  
| last1  = Galán            | first1 = Fernando          | authorlink1 =  
Line 158: Line 156:
| url    = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748504/
| url    = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748504/
}}</ref>
}}</ref>
<ref name="Gorman2015">{{citation
<ref name="Gorman2015">{{citation
| last1  = Gorman          | first1 = Gráinne S          | authorlink1 = Gráinne Gorman
| last1  = Gorman          | first1 = Gráinne S          | authorlink1 = Gráinne Gorman
Line 174: Line 171:
| url    = http://www.nmd-journal.com/article/S0960-8966(15)00087-5/abstract
| url    = http://www.nmd-journal.com/article/S0960-8966(15)00087-5/abstract
}}</ref>
}}</ref>
<ref name="Myhill2009">{{citation
<ref name="Myhill2009">{{citation
| last1  = Myhill          | first1 = S                  | authorlink1 = Sarah Myhill
| last1  = Myhill          | first1 = S                  | authorlink1 = Sarah Myhill
Line 185: Line 181:
| url    = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680051/
| url    = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680051/
}}</ref>
}}</ref>
<ref name="Vecchiet1996">{{citation
<ref name="Vecchiet1996">{{citation
| last1  = Vecchiet              | first1 = L
| last1  = Vecchiet              | first1 = L
Line 202: Line 197:
| url    = http://www.ncbi.nlm.nih.gov/pubmed/8859904
| url    = http://www.ncbi.nlm.nih.gov/pubmed/8859904
}}</ref>
}}</ref>
<ref name="ZhangC1995">{{citation
<ref name="ZhangC1995">{{citation
| last1  = Zhang                  | first1 = C
| last1  = Zhang                  | first1 = C
Line 216: Line 210:
| url    = http://www.ncbi.nlm.nih.gov/pubmed/7633428
| url    = http://www.ncbi.nlm.nih.gov/pubmed/7633428
}}</ref>
}}</ref>
<ref name="Saric2009">{{citation
<ref name="Saric2009">{{citation
| last1  = Saric            | first1 = J
| last1  = Saric            | first1 = J
Line 231: Line 223:
| url    = http://http://doi.org/10.1021/pr901019z
| url    = http://http://doi.org/10.1021/pr901019z
}}</ref>
}}</ref>
 
<ref name="Armstrong2014">{{Citation
<ref name="Armstrong2014">
{{Citation
| last1  =  Armstrong            | first1 = CW            | authorlink1 = Christopher Armstrong
| last1  =  Armstrong            | first1 = CW            | authorlink1 = Christopher Armstrong
| last2  =  McGregor            | first2 = NR            | authorlink2 = Neil McGregor
| last2  =  McGregor            | first2 = NR            | authorlink2 = Neil McGregor
Line 247: Line 237:
}}
}}
</ref>
</ref>
 
<ref name="Myhill2013">{{Citation
<ref name="Myhill2013">
{{Citation
| last1  = Myhill                | first1 = Sarah            | authorlink1 = Sarah Myhill
| last1  = Myhill                | first1 = Sarah            | authorlink1 = Sarah Myhill
| last2  = Booth                  | first2 = NE              | authorlink2 = NE Booth
| last2  = Booth                  | first2 = NE              | authorlink2 = NE Booth
Line 262: Line 250:
}}
}}
</ref>
</ref>
 
<ref name="Vermeulen2010">{{Citation
<ref name="Vermeulen2010">
{{Citation
| last1  = Vermeulen            | first1 = RC                | authorlink1 = RC Vermeulen
| last1  = Vermeulen            | first1 = RC                | authorlink1 = RC Vermeulen
| last2  = Kirk                  | first2 = RM                | authorlink2 = RM Kirk
| last2  = Kirk                  | first2 = RM                | authorlink2 = RM Kirk
Line 278: Line 264:
}}
}}
</ref>
</ref>
 
<ref name="Maes2009">{{Citation
<ref name="Maes2009">
{{Citation
| last1  = Maes                  | first1 = M                | authorlink1 = Michael Maes
| last1  = Maes                  | first1 = M                | authorlink1 = Michael Maes
| last2  = Mihaylova            | first2 = I                | authorlink2 = I Mihaylova
| last2  = Mihaylova            | first2 = I                | authorlink2 = I Mihaylova
Line 295: Line 279:
}}
}}
</ref>
</ref>
 
<ref name="Morris2013">{{Citation
<ref name="Morris2013">
{{Citation
| last1  = Morris                | first1 = G                  | authorlink1 = Gerwyn Morris
| last1  = Morris                | first1 = G                  | authorlink1 = Gerwyn Morris
| last2  = Maes                  | first2 = M                  | authorlink2 = Michael Maes
| last2  = Maes                  | first2 = M                  | authorlink2 = Michael Maes
Line 308: Line 290:
}}
}}
</ref>
</ref>
 
<ref name="Morris2014">{{Citation
<ref name="Morris2014">
{{Citation
| last1  = Morris                | first1 = Gerwyn                | authorlink1 = Gerwyn Morris
| last1  = Morris                | first1 = Gerwyn                | authorlink1 = Gerwyn Morris
| last2  = Maes                  | first2 = Michael                | authorlink2 = Michael Maes
| last2  = Maes                  | first2 = Michael                | authorlink2 = Michael Maes
Line 321: Line 301:
}}
}}
</ref>
</ref>
 
<ref name="Rudel2010">{{Citation
<ref name="Rudel2010">
{{Citation
| last1  = Rudel T                | first1 = T                  | authorlink1 = Rudel
| last1  = Rudel T                | first1 = T                  | authorlink1 = Rudel
| last2  = Kepp O                  | first2 = O                  | authorlink2 = Kepp
| last2  = Kepp O                  | first2 = O                  | authorlink2 = Kepp
Line 335: Line 313:
}}
}}
</ref>
</ref>
 
<ref name="Siu2016">{{Citation
<ref name="Siu2016">
{{Citation
| last1  = Siu                | first1 = GK                | authorlink1 = GK Siu
| last1  = Siu                | first1 = GK                | authorlink1 = GK Siu
| last2  = Zhou              | first2 = F                | authorlink2 = F Zhou
| last2  = Zhou              | first2 = F                | authorlink2 = F Zhou
Line 355: Line 331:
}}
}}
</ref>
</ref>
 
<ref name="Nagai2005">{{Citation
<ref name="Nagai2005">
{{Citation
| last1  =  Nagai              | first1 = T                  | authorlink1 = T Nagai
| last1  =  Nagai              | first1 = T                  | authorlink1 = T Nagai
| last2  =  Abe                | first2 = A                  | authorlink2 = A Abe
| last2  =  Abe                | first2 = A                  | authorlink2 = A Abe
Line 369: Line 343:
}}
}}
</ref>
</ref>
 
<ref name="Meeus2013">{{Citation
<ref name="Meeus2013">
{{Citation
| last1  = Meeus                | first1 = M                  | authorlink1 =  
| last1  = Meeus                | first1 = M                  | authorlink1 =  
| last2  = Nijs                  | first2 = J                  | authorlink2 = Jo Nijs
| last2  = Nijs                  | first2 = J                  | authorlink2 = Jo Nijs
Line 387: Line 359:
</references>
</references>


[[Category:Biochemistry and cell biology]][[Category:Organelles]][[Category:Energy System]]
[[Category:Biochemistry and cell biology]]
[[Category:Organelles]]
[[Category:Energy System]]

Revision as of 04:37, April 20, 2018

A single cellular mitochondrion

Mitochondria are organelles found in all cells that have a nucleus. In the human body, that would be all cells except red blood cells. They generate most of a cell's energy by manufacturing adenosine triphosphate, ATP. Mitochondria have their own independent genome called mitochondrial DNA.

Biogenesis[edit | edit source]

Mitochondria biogenesis (the creation of new mitochondria) can be increased via hormesis, the exposure of the body to short-term stressors. Healthy stressors include exercise, fasting, cold, heat and light. Resveratrol can also increase mitochondrial biogenesis.

Immunity[edit | edit source]

Mitochondria play crucial role in innate immunity, namely through their induction of interferon production and apoptosis through mitochondrial antiviral signaling protein (MAVS). Many viruses evade host immunity by cleaving or downregulating MAVS.

In human disease[edit | edit source]

Infection with pathogens, including viruses, bacteria, and parasites, can all induce changes in mitochondrial function and energy metabolism.

Viruses can induce or inhibit mitochondrial processes in order to replicate. "Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus and Hepatitis C Virus, hijack the host mitochondrial proteins to function fully inside the host cell."[1][2] Hepatitis C has also been shown to "fragment host mitochondria".[2]

Parasites such as Toxoplasma gondii have also been shown to modulate host energy metabolism and dysregulate mitochondrial function,[3], as have bacteria [4] such as E. coli, which has been shown to modulate mitochondrial receptor function.[5]

Mitochondrial disease has a high prevalence of fatigue and debilitation.[6]

Chronic fatigue syndrome[edit | edit source]

There is evidence of mitochondrial dysfunction in Chronic Fatigue Syndrome patients. Muscle biopsies have shown evidence of mitochondrial degeneration [7], deletions of mitochondrial DNA [8][9], the reduction of mitochondrial activity [8], and Sarah Myhill found measurable mitochondrial dysfunction correlating with severity of illness.[10][11] Myhill also produced improvement by targeting those dysfunctions.[12] Mitochondrial DNA variants correlate with symptoms, symptom clusters & symptom severity.[13]

Mitochondrial disorders can be mistaken for Chronic Fatigue Syndrome.[14]

There is evidence of genetic risk factors for mitochondrial dysfunction in related diseases such as complex regional pain syndrome, postural orthostatic tachycardia syndrome (POTS), and dysautonomia.[15]

Potential treatment[edit | edit source]

Garth Nicolson has proposed that mitochondrial lipid replacement therapy can ameliorate mitochondrial related fatigue using a proprietary blend of phospholipids called NT Factor.

Courtney Craig has proposed treatment of mitochondrial damage in ME/CFS patients using fasting, caloric restriction and a ketogenic diet.[16]

Notable studies[edit | edit source]

Videos[edit | edit source]

Learn more[edit | edit source]

See also[edit | edit source]

Unused Citations[edit | edit source]

Armstrong2014 [17] Vermeulen2010 [18] Maes2009 [19] Morris2013 [20]. Morris2014 [21] Meeus2013 [22]

<---+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0 -->

Citations[edit | edit source]

  1. Anand, Sanjeev K; Tikoo, Suresh K (October 24, 2013), "Viruses as Modulators of Mitochondrial Functions", Advances in Virology, Advances in Virology, 2013, 2013: –738794, doi:10.1155/2013/738794
  2. 2.0 2.1 Siu, GK; Zhou, F; Yu, MK; Zhang, L; Wang, T; Liang, Y; Chen, Y; Chan, HC; Yu, S (March 2016), "Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation", Sci. Rep., doi:10.1038/srep23464, PMID 27010100
  3. Saric, J; Li, JV; Swann, JR; et al. (November 8, 2010), "Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents" Check |url= value (help), Journal of proteome research, 9: 2255–2264
  4. Rudel T, T; Kepp O, O; Kozjak-Pavlovic V, V (October 2010), "Interactions between bacterial pathogens and mitochondrial cell death pathways", Nat Rev Microbiol., doi:10.1038/nrmicro2421, PMID 20818415
  5. Nagai, T; Abe, A; Sasakawa, C (January 2005), "Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF", J Bio. Chem., doi:10.1074/jbc.M411550200, PMID 15533930
  6. Gorman, Gráinne S; Elson, Joanna L; Newman, Jane; et al. (July 2015), "Perceived fatigue is highly prevalent and debilitating in patients with mitochondrial disease", Neuromuscular disorders: NMD, 25 (7): 563–566, doi:10.1016/j.nmd.2015.03.001, ISSN 1873-2364, PMID 26031904
  7. Behan, WMH; More, IAR; Behan, PO (1991), "Mitochondrial abnormalities in the postviral fatigue syndrome", Acta Neuropathologica, 83 (1): 61–65, PMID 1792865
  8. 8.0 8.1 Vecchiet, L; Montanari, G; Pizzigallo, E; et al. (April 19, 1996), "Sensory characterization of somatic parietal tissues in humans with chronic fatigue syndrome", Neuroscience Letters, 208 (2): 117–120, PMID 8859904
  9. Zhang, C; Baumer, A; Mackay, IR; et al. (April 1995), "Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome", Human Molecular Genetics, 4 (4): 751–754, PMID 7633428
  10. Booth, NE; Myhill, S; McLaren-Howard, J (2012), "Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)", Int J Clin Exp Med, 5 (3): 208–220, PMID 22837795
  11. Myhill, S; Booth, NE; McLaren-Howard, J (January 15, 2009), "Chronic fatigue syndrome and mitochondrial dysfunction", Int J Clin Exp Med, 2 (1): 1–16, PMID 19436827
  12. Myhill, Sarah; Booth, NE; McLaren-Howard, John (2013), "Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) - a clinical audit.", International Journal of Clinical and Experimental Medicine, PMID 23236553
  13. Billing-Ross, Paul; Germain, Arnaud; Ye, Kaixiong; et al. (2016), "Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome", Journal of Translational Medicine, 14: 19, doi:10.1186/s12967-016-0771-6, ISSN 1479-5876, PMID 26791940, lay summary
  14. Galán, Fernando; de Lavera, Isabel; Cotán, David; Sánchez-Alcázar, José A (September 24, 2015), "Mitochondrial Myopathy in Follow-up of a Patient With Chronic Fatigue Syndrome", J Investig Med High Impact Case Rep, 3 (3), doi:10.1177/2324709615607908, PMID 26904705
  15. Boles, RG; Zaki, EA; Kerr, JR; et al. (July 2015), "Increased prevalence of two mitochondrial DNA polymorphisms in functional disease: Are we describing different parts of an energy-depleted elephant?", Mitochondrion, 23: 1-6, doi:10.1016/j.mito.2015.04.005, PMID 25934187
  16. Craig, Courtney (November 2015), "Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets", Medical Hypotheses, 85 (5): 690-693, doi:10.1016/j.mehy.2015.08.013, PMID 26315446
  17. Armstrong, CW; McGregor, NR; Butt, HL; Gooley, PR (October 2014), "Metabolism in chronic fatigue syndrome", Adv Clin Chem, 66: 121-72, doi:10.1016/B978-0-12-801401-1.00005-0, PMID 25344988
  18. Vermeulen, RC; Kirk, RM; Visser, FC; Sluiter, W; Scholte, HR (October 2010), "Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity", Journal of Translational Medicine, doi:10.1186/1479-5876-8-93, PMID 20937116
  19. Maes, M; Mihaylova, I; Kubera, M; Uytterhoeven, M; Vrydags, N; Bosmans, E (2009), "Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder", Neuro Endocrinol Lett., PMID 20010505
  20. Morris, G; Maes, M (September 2013), "Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics.", BMC Med, doi:10.1186/1741-7015-11-205, PMID 24229326
  21. Morris, Gerwyn; Maes, Michael (March 2014), "Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways", Metab Brain Dis., doi:10.1007/s11011-013-9435-x, PMID 24557875
  22. Meeus, M; Nijs, J; Hermans, L; Goubert, D; Calders, P (September 2013), "The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets?", Expert Opin Ther Targets, doi:10.1517/14728222.2013.818657, PMID 23834645