Neural strain: Difference between revisions

From MEpedia, a crowd-sourced encyclopedia of ME and CFS science and history
No edit summary
m (c/e)
Line 1: Line 1:


Neural injury resulting from biomechanical causes can cause profound metabolic changes in the affected tissue. Injury can result from tensile, compressive, or shear stress or as a combination of stresses.<ref name=":0">{{Cite journal|last=Boyd|first=Benjamin S.|last2=Topp|first2=Kimberly S.|date=2006-01-01|title=Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice|url=https://academic.oup.com/ptj/article/86/1/92/2805155|journal=Physical Therapy|language=en|volume=86|issue=1|pages=92–109|doi=10.1093/ptj/86.1.92|issn=0031-9023}}</ref>
'''Neural injury''' resulting from biomechanical causes can cause profound [[metabolic]] changes in the affected tissue. Injury can result from tensile, compressive, or shear stress or as a combination of stresses.<ref name=":0">{{Cite journal|last=Boyd|first=Benjamin S.|last2=Topp|first2=Kimberly S.|date=2006-01-01|title=Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice|url=https://academic.oup.com/ptj/article/86/1/92/2805155|journal=Physical Therapy|language=en|volume=86|issue=1|pages=92–109|doi=10.1093/ptj/86.1.92|issn=0031-9023}}</ref>


=== Tension ===
=== Tension ===
Line 19: Line 19:


=== Compression ===
=== Compression ===
Compression of nerves can result in changes in microcirculation and ischemia<ref>{{Cite journal|last=Rydevik|first=B.|last2=Lundborg|first2=G.|last3=Bagge|first3=U.|date=1981-01-01|title=Effects of graded compression on intraneural blood flow: An in vivo study on rabbit tibial nerve|url=http://www.sciencedirect.com/science/article/pii/S0363502381800032|journal=The Journal of Hand Surgery|volume=6|issue=1|pages=3–12|doi=10.1016/S0363-5023(81)80003-2|issn=0363-5023}}</ref>, changes in vascular permeability, edema, axonal damage, and has been associated with demyelination.<ref name=":0" /><ref>{{Cite journal|last=Myers|first=R. R.|last2=Powell|first2=H. C.|date=1986/07|title=Pathology of experimental nerve compression.|url=http://europepmc.org/abstract/med/3724067|journal=Laboratory investigation; a journal of technical methods and pathology|volume=55|issue=1|pages=91–100|issn=0023-6837|pmid=3724067}}</ref><ref>{{Cite journal|last=Dahlin|first=L. B.|last2=Lundborg|first2=G.|date=1992/05|title=The pathophysiology of nerve compression.|url=http://europepmc.org/abstract/med/1613031|journal=Hand clinics|volume=8|issue=2|pages=215–227|issn=0749-0712|pmid=1613031}}</ref><ref>{{Cite journal|last=Dahlin|first=L. B.|last2=Lundborg|first2=G.|date=1996/05|title=Anatomy, function, and pathophysiology of peripheral nerves and nerve compression.|url=http://europepmc.org/abstract/med/8724572|journal=Hand clinics|volume=12|issue=2|pages=185–193|issn=0749-0712|pmid=8724572}}</ref>
Compression of nerves can result in changes in microcirculation and ischemia,<ref>{{Cite journal|last=Rydevik|first=B.|last2=Lundborg|first2=G.|last3=Bagge|first3=U.|date=1981-01-01|title=Effects of graded compression on intraneural blood flow: An in vivo study on rabbit tibial nerve|url=http://www.sciencedirect.com/science/article/pii/S0363502381800032|journal=The Journal of Hand Surgery|volume=6|issue=1|pages=3–12|doi=10.1016/S0363-5023(81)80003-2|issn=0363-5023}}</ref> changes in vascular permeability, edema, axonal damage, and has been associated with demyelination.<ref name=":0" /><ref>{{Cite journal|last=Myers|first=R. R.|last2=Powell|first2=H. C.|date=1986/07|title=Pathology of experimental nerve compression.|url=http://europepmc.org/abstract/med/3724067|journal=Laboratory investigation; a journal of technical methods and pathology|volume=55|issue=1|pages=91–100|issn=0023-6837|pmid=3724067}}</ref><ref>{{Cite journal|last=Dahlin|first=L. B.|last2=Lundborg|first2=G.|date=1992/05|title=The pathophysiology of nerve compression.|url=http://europepmc.org/abstract/med/1613031|journal=Hand clinics|volume=8|issue=2|pages=215–227|issn=0749-0712|pmid=1613031}}</ref><ref>{{Cite journal|last=Dahlin|first=L. B.|last2=Lundborg|first2=G.|date=1996/05|title=Anatomy, function, and pathophysiology of peripheral nerves and nerve compression.|url=http://europepmc.org/abstract/med/8724572|journal=Hand clinics|volume=12|issue=2|pages=185–193|issn=0749-0712|pmid=8724572}}</ref>


Prologned compression can result in [[inflammation]] and activation of endoneurial fibroblasts, mast cells, and macrophages.<ref>{{Cite journal|last=Powell|first=H. C.|last2=Myers|first2=R. R.|date=1986-7|title=Pathology of experimental nerve compression|url=https://www.ncbi.nlm.nih.gov/pubmed/3724067|journal=Laboratory Investigation; a Journal of Technical Methods and Pathology|volume=55|issue=1|pages=91–100|issn=0023-6837|pmid=3724067}}</ref>
Prologned compression can result in [[inflammation]] and activation of endoneurial fibroblasts, mast cells, and macrophages.<ref>{{Cite journal|last=Powell|first=H. C.|last2=Myers|first2=R. R.|date=1986-7|title=Pathology of experimental nerve compression|url=https://www.ncbi.nlm.nih.gov/pubmed/3724067|journal=Laboratory Investigation; a Journal of Technical Methods and Pathology|volume=55|issue=1|pages=91–100|issn=0023-6837|pmid=3724067}}</ref>
Line 29: Line 29:
* Nerve compression syndrome
* Nerve compression syndrome


== ME/CFS ==
==ME/CFS ==
In a study of neuromuscular strain in ME/CFS, 60 people with ME/CFS and 20 healthy controls randomly were assigned to undergo a neuromuscular strain maneuver or sham maneuver. Those with ME/CFS in the strain condition group had significantly increased symptoms for up to 24 hours.<ref>{{Cite journal|last=Violand|first=Richard L.|last2=Thompson|first2=Carol B.|last3=Moni|first3=Malini|last4=Marden|first4=Colleen L.|last5=Jasion|first5=Samantha E.|last6=Lauver|first6=Megan|last7=Fontaine|first7=Kevin R.|last8=Rowe|first8=Peter C.|date=2016-07-18|title=Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome|url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159386|journal=PLOS ONE|language=en|volume=11|issue=7|pages=e0159386|doi=10.1371/journal.pone.0159386|issn=1932-6203}}</ref>
In a study of neuromuscular strain in ME/CFS, 60 people with ME/CFS and 20 healthy controls randomly were assigned to undergo a neuromuscular strain maneuver or sham maneuver. Those with ME/CFS in the strain condition group had significantly increased symptoms for up to 24 hours.<ref>{{Cite journal|last=Violand|first=Richard L.|last2=Thompson|first2=Carol B.|last3=Moni|first3=Malini|last4=Marden|first4=Colleen L.|last5=Jasion|first5=Samantha E.|last6=Lauver|first6=Megan|last7=Fontaine|first7=Kevin R.|last8=Rowe|first8=Peter C.|date=2016-07-18|title=Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome|url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159386|journal=PLOS ONE|language=en|volume=11|issue=7|pages=e0159386|doi=10.1371/journal.pone.0159386|issn=1932-6203}}</ref>


== References ==
== References ==
<references />
<references />

Revision as of 06:46, July 29, 2019

Neural injury resulting from biomechanical causes can cause profound metabolic changes in the affected tissue. Injury can result from tensile, compressive, or shear stress or as a combination of stresses.[1]

Tension[edit | edit source]

In animal models, stretching or tension of nerves results in substantially reduced blood flow.[1][2][3][4][5][6][7][8] Tension impairs nerve regeneration.[9]

Tethered cord syndrome[edit | edit source]

Tethered cord syndrome, a condition where tissue attachments limit the movement of the spinal cord within the spinal column, is associated with impaired glucose metabolism in spinal cord tissue,[10] changes in the reduction/oxidation ratio of cytochrome oxidase.[11] and reduced ATP production.[12] Energy loss due to neural membrane stretching contributes to leakage of sodium, potassium and calcium.[13]

A study of energy cost of walking in adolescents with tethered cord, as measured by oxygen uptake, found that “energy cost per metre during walking at preferred speed and physical strain were higher than in peers without disability.”[14]

People with tethered cord syndrome have reduced blood flow to the spinal cord.[15]

“Traction on the caudal cord results in decreased blood flow causing metabolic derangements that culminate in motor, sensory, and urinary neurological deficits. The untethering operation restores blood flow and reverses the clinical picture in most symptomatic cases.”[16]

In a study of five children undergoing surgery for tethered cord syndrome group, spinal cord blood flow prior to untethering was a mean of 12.6 ml/min per 100 g of tissue. It increased in all cases after release to a mean of 29.4 ml/min per 100 g of tissue.[17]

Compression[edit | edit source]

Compression of nerves can result in changes in microcirculation and ischemia,[18] changes in vascular permeability, edema, axonal damage, and has been associated with demyelination.[1][19][20][21]

Prologned compression can result in inflammation and activation of endoneurial fibroblasts, mast cells, and macrophages.[22]

Diagnoses[edit | edit source]

Diagnoses associated with tension, compressive and shear stress:

ME/CFS[edit | edit source]

In a study of neuromuscular strain in ME/CFS, 60 people with ME/CFS and 20 healthy controls randomly were assigned to undergo a neuromuscular strain maneuver or sham maneuver. Those with ME/CFS in the strain condition group had significantly increased symptoms for up to 24 hours.[23]

References[edit | edit source]

  1. 1.0 1.1 1.2 Boyd, Benjamin S.; Topp, Kimberly S. (January 1, 2006). "Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice". Physical Therapy. 86 (1): 92–109. doi:10.1093/ptj/86.1.92. ISSN 0031-9023.
  2. Clark, William L.; Trumble, Thomas E.; Swiontkowski, Mark F.; Tencer, Allan F. (July 1, 1992). "Nerve tension and blood flow in a rat model of immediate and delayed repairs". The Journal of Hand Surgery. 17 (4): 677–687. doi:10.1016/0363-5023(92)90316-H. ISSN 0363-5023.
  3. Clark, William L.; Trumble, Thomas E.; Swiontkowski, Mark F.; Tencer, Allan F. (July 1, 1992). "Nerve tension and blood flow in a rat model of immediate and delayed repairs". The Journal of Hand Surgery. 17 (4): 677–687. doi:10.1016/0363-5023(92)90316-H. ISSN 0363-5023.
  4. Driscoll, Peter J.; Glasby, Michael A.; Lawson, Graham M. (2002). "An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation". Journal of Orthopaedic Research. 20 (2): 370–375. doi:10.1016/S0736-0266(01)00104-8. ISSN 1554-527X.
  5. Clark, William L.; Trumble, Thomas E.; Swiontkowski, Mark F.; Tencer, Allan F. (July 1, 1992). "Nerve tension and blood flow in a rat model of immediate and delayed repairs". The Journal of Hand Surgery. 17 (4): 677–687. doi:10.1016/0363-5023(92)90316-H. ISSN 0363-5023.
  6. Tanoue, M.; Yamaga, M.; Ide, J.; Takagi, K. (1996-6). "Acute stretching of peripheral nerves inhibits retrograde axonal transport". Journal of Hand Surgery (Edinburgh, Scotland). 21 (3): 358–363. ISSN 0266-7681. PMID 8771477. Check date values in: |date= (help)
  7. Ogata, K.; Naito, M. (1986-2). "Blood flow of peripheral nerve effects of dissection, stretching and compression". Journal of Hand Surgery (Edinburgh, Scotland). 11 (1): 10–14. ISSN 0266-7681. PMID 3958526. Check date values in: |date= (help)
  8. Jou, I. M.; Lai, K. A.; Shen, C. L.; Yamano, Y. (2000-1). "Changes in conduction, blood flow, histology, and neurological status following acute nerve-stretch injury induced by femoral lengthening". Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 18 (1): 149–155. doi:10.1002/jor.1100180121. ISSN 0736-0266. PMID 10716291. Check date values in: |date= (help)
  9. Sunderland, Ian R. P.; Brenner, Michael J.; Singham, Janakie; Rickman, Susan R.; Hunter, Daniel A.; Mackinnon, Susan E. (2004-10). "Effect of Tension on Nerve Regeneration in Rat Sciatic Nerve Transection Model". Annals of Plastic Surgery. 53 (4): 382. doi:10.1097/01.sap.0000125502.63302.47. ISSN 0148-7043. Check date values in: |date= (help)
  10. Colohan, Austin R. T.; Zouros, Alexander; Siddiqi, Javed; Yamada, Shoko M.; Yamada, Brian S.; Pezeshkpour, Gholam; Won, Daniel J.; Yamada, Shokei (August 1, 2007). "Pathophysiology of tethered cord syndrome and similar complex disorders". Neurosurgical Focus. 23 (2): 1–10. doi:10.3171/FOC-07/08/E6. ISSN 1092-0684.
  11. Yamada, Shoko M.; Won, Daniel J.; Yamada, Shokei (February 1, 2004). "Pathophysiology of tethered cord syndrome: correlation with symptomatology". Neurosurgical Focus. 16 (2): 1–5. doi:10.3171/foc.2004.16.2.7. ISSN 1092-0684.
  12. Sullivan, Stephen; Park, Paul; Stetler, William R. (July 1, 2010). "Pathophysiology of adult tethered cord syndrome: review of the literature". Neurosurgical Focus. 29 (1): E2. doi:10.3171/2010.3.FOCUS1080. ISSN 1092-0684.
  13. Yamada, Shokei; Iacono, Robert P.; Andrade, Terry; Mandybur, George; Yamada, Brian S. (April 1, 1995). "Pathophysiology of Tethered Cord Syndrome". Neurosurgery Clinics of North America. Spinal Dysraphism. 6 (2): 311–323. doi:10.1016/S1042-3680(18)30465-0. ISSN 1042-3680.
  14. Bruinings, A. L.; Berg‐Emons, H. J. G. Van Den; Buffart, L. M.; Heijden‐Maessen, H. C. M. Van Der; Roebroeck, M. E.; Stam, H. J. (2007). "Energy cost and physical strain of daily activities in adolescents and young adults with myelomeningocele". Developmental Medicine & Child Neurology. 49 (9): 672–677. doi:10.1111/j.1469-8749.2007.00672.x. ISSN 1469-8749.
  15. Colohan, Austin R. T.; Zouros, Alexander; Siddiqi, Javed; Yamada, Shoko M.; Yamada, Brian S.; Pezeshkpour, Gholam; Won, Daniel J.; Yamada, Shokei (August 1, 2007). "Pathophysiology of tethered cord syndrome and similar complex disorders". Neurosurgical Focus. 23 (2): 1–10. doi:10.3171/FOC-07/08/E6. ISSN 1092-0684.
  16. Rekate, Harold L.; Theodore, Nicholas; Kalani, M. Yashar; Filippidis, Aristotelis S. (July 1, 2010). "Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome". Neurosurgical Focus. 29 (1): E9. doi:10.3171/2010.3.FOCUS1085. ISSN 1092-0684.
  17. Danto, Joseph; Greenberg, Burt M.; Rosenthal, Alan D.; Schneider, Steven J. (February 1, 1993). "A Preliminary Report on the Use of Laser-Doppler Flowmetry during Tethered Spinal Cord Release". Neurosurgery. 32 (2): 214–218. doi:10.1227/00006123-199302000-00010. ISSN 0148-396X.
  18. Rydevik, B.; Lundborg, G.; Bagge, U. (January 1, 1981). "Effects of graded compression on intraneural blood flow: An in vivo study on rabbit tibial nerve". The Journal of Hand Surgery. 6 (1): 3–12. doi:10.1016/S0363-5023(81)80003-2. ISSN 0363-5023.
  19. Myers, R. R.; Powell, H. C. (1986/07). "Pathology of experimental nerve compression". Laboratory investigation; a journal of technical methods and pathology. 55 (1): 91–100. ISSN 0023-6837. PMID 3724067. Check date values in: |date= (help)
  20. Dahlin, L. B.; Lundborg, G. (1992/05). "The pathophysiology of nerve compression". Hand clinics. 8 (2): 215–227. ISSN 0749-0712. PMID 1613031. Check date values in: |date= (help)
  21. Dahlin, L. B.; Lundborg, G. (1996/05). "Anatomy, function, and pathophysiology of peripheral nerves and nerve compression". Hand clinics. 12 (2): 185–193. ISSN 0749-0712. PMID 8724572. Check date values in: |date= (help)
  22. Powell, H. C.; Myers, R. R. (1986-7). "Pathology of experimental nerve compression". Laboratory Investigation; a Journal of Technical Methods and Pathology. 55 (1): 91–100. ISSN 0023-6837. PMID 3724067. Check date values in: |date= (help)
  23. Violand, Richard L.; Thompson, Carol B.; Moni, Malini; Marden, Colleen L.; Jasion, Samantha E.; Lauver, Megan; Fontaine, Kevin R.; Rowe, Peter C. (July 18, 2016). "Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome". PLOS ONE. 11 (7): e0159386. doi:10.1371/journal.pone.0159386. ISSN 1932-6203.